Question		Answer	Marks	Guidance			
1	(a)	NOTE: First 3 marks are ONLY available from an expression using [NO]2 Units are marked independently 		Note: rate ar the graph, The [NO] bel For these [No	nd [NO] are any co ow are the most o O] values, these a	orrect pair of commonly see are the ONLY	readings from en. rates allowed
		mark Use of any two correct values for rate and [NO] from graph e.g. for 5.0×10^{-4} and 4.2×10^{-4} , $k = \frac{4.2 \times 10^{-4}}{(2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2}$ OR $4.2 \times 10^{-4} = k(2.0 \times 10^{-2}) \times (5.0 \times 10^{-4})^2 \checkmark$ Calculation of $k 2$ marks		[NO] 1.0 × 10 ⁻⁴ 2.0 × 10 ⁻⁴ 3.0 × 10 ⁻⁴ 4.0 × 10 ⁻⁴ 5.0 × 10 ⁻⁴ 6.0 × 10 ⁻⁴ 7.0 × 10 ⁻⁴	rate 0.1×10^{-4} to 0.2×10^{-4} to 0.6×10^{-4} to 0.7×10^{-4} 1000000000000000000000000000000000000	k 50000 100000 75000 87500 83333 84375 84000 83333 84375	k 5.0×10^4 1.0×10^5 7.5×10^4 8.8×10^4 8.3×10^4 8.4×10^4 8.3×10^4 8.4×10^4 8.3×10^4 8.4×10^4 8.3×10^4
		FOR 1 MARK <i>k</i> calculated correctly from values obtained from graph BUT NOT in standard form AND/OR more than 2 SF e.g. $k = \frac{6.0 \times 10^{-4}}{(2.0 \times 10^{-2}) \times (6.0 \times 10^{-4})^2} = 83333.33$ \checkmark OR FOR 2 MARKS <i>k</i> calculated correctly from values obtained from graph AND in standard form AND TO 2 SF e.g. <i>k</i> = 83333.33 gives 8.3 × 10 ⁴ \checkmark UNITS FOR 1 MARK: dm ⁶ mol ⁻² s ⁻¹ \checkmark	4	IF OTHER va principle. If NOTE: IGNO SPECIAL CA from ONLY 1. Powers of 2. [H ₂] ² [NO] u 3. Any value	alues are given, any doubt, conta ORE any number ASES that ALLO ONE of the follow 10 incorrect or at used instead of [H within ±0.2 of act	mark using t act TL. s used from W ECF for ca wing (2 mark osent in initial l ₂][NO] ² ual values fro	tangents alculation of <i>k</i> (s) <i>k</i> expression om graph

Question	Answer	Marks	Guidance
(b) (i)	Image: Provide the starting at 0,0 ✓ Image: Provide the starting at 0,0 ✓ One straight upward line starting at 0,0 and steeper AND Steeper line labelled H OR less steep line labelled L ✓	2	 ALLOW 1 mark for two upward sloping curves starting at origin AND upper curve labelled H and lower curve labelled L NOTE: ALLOW some leeway for lines starting from origin ALLOW straight line not drawn with ruler, i.e. is a straight line rather than a curve ALLOW similar labelling as long as it is clear which line is which
(b) (ii)	increases ✓	1	
(c)	$ \begin{array}{c} \text{MARK INDEPENDENTLY} \\ \hline $	2	ALLOW curve touching y axis ALLOW curve touching x axis ALLOW Two half lives are the same IGNORE 'regular' half life (not necessarily the same)

G	Question		Answer	Marks	Guidance	
	(d)	(i)	$H_2 + N_2 O \rightarrow N_2 + H_2 O \checkmark$		1	ONLY correct answer DO NOT ALLOW multiples
	(d)	(ii)	Steps 1 AND Step 2 together give 2NO + H ₂ ✓		1	 ALLOW Step 1 AND Step 2 together give species in same ratio as in rate equation ALLOW rate-determining step/slow step for Step 2 ALLOW H₂ reacts with N₂O₂ which is formed from 2NO NOTE: The response must link Step 1 with Step 2 Steps can be referenced from the species in each step
				Total	11	

Question		ion	Answer	Marks	Guidance
2	(a)	(i)	5 OR 5th (order) ✓	1	
	(a)	(ii)	 (stoichiometry in) rate equation does not match (stoichiometry) in overall equation ✓ Collision unlikely with more than 2 ions/species/particles ✓ 	2	 ALLOW moles/ions/species/particles/molecules/atoms throughout (<i>i.e. emphasis on particles</i>) IGNORE more reactants in overall equation If number of species is stated, ALLOW 3–5 only (<i>rate equation contains 5 ions</i>) DO NOT ALLOW negative ions would repel (<i>there is a mixture of positive and negative ions</i>) IGNORE more than two reactants collide (<i>not related to rate equation</i>)
	(b)		initial rate/ mol dm ⁻³ s ⁻¹ 0 0 0 0 $(I^{r}(aq)]/$ mol dm ⁻³ Straight upward line AND starting at 0,0 \checkmark initial rate/ mol dm ⁻³ s ⁻¹ 0 0 $(H^{+}(aq)]/ mol dm-3$ Curve with increasing gradient, AND starting at 0,0 \checkmark	2	ALLOW lines starting close to 0,0 ALLOW 2nd order line with 'straight' section early or late as long as an upward curve is seen between.
	(c)	(i)	5.4(0) ✓ 614.4(0) ✓	2	IGNORE sign ALLOW 614 OR 610

(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 6.7×10^8 OR 67000000 dm ¹² mol ⁻⁴ s ⁻¹ , award 3 marks IF answer = 6.7×10^8 OR 670000000 with incorrect units, award 2 marks <i>k</i> to >2 SF: 6666666666.7 \checkmark		 ALLOW ECF from incorrect initial rates if 1st experimental results have not been used. (Look to 4(c)(i) to check) <i>i.e.</i> IF other rows have been used, then calculate the rate constant from data chosen. For <i>k</i>, ALLOW 1 mark for the following:
		OR <i>k</i> to 2 SF: 6.7 × 10 ⁸ OR 670000000 ✓ ✓		6.6 × 10 ⁸ recurring 6.6 × 10 ⁸ 2 SF answer for <i>k</i> BUT one power of 10 out i.e. 6.7×10^9 OR 6.7×10^7
		units: $dm^{12} mol^{-4} s^{-1} \checkmark$	3	ALLOW units in any order, e.g. mol ⁻⁴ dm ¹² s ⁻¹
(c)	(iii)	$(K_a =) 10^{-3.75} \text{ OR } 1.78 \times 10^{-4} \pmod{\text{dm}^{-3}} \checkmark$ $[\text{H}^+] = \sqrt{1.78 \times 10^{-4} \times 0.0200}$ $= 1.89 \times 10^{-3} \pmod{\text{dm}^{-3}} \checkmark$		FULL ANNOTATIONS MUST BE USED For ALL marks, ALLOW 2 SF up to calculator value correctly rounded $1.77827941 \times 10^{-4}$ ALLOW $\sqrt{10^{-3.75} \times 0.0200}$ for first marking point ALLOW 1.88×10^{-3} (mol dm ⁻³)
		initial rate = $6.7 \times 10^8 \times 0.01 \times 0.015^2 \times (1.89 \times 10^{-3})^2$ = 5.33×10^{-3} to 5.38×10^{-3} (mol dm ⁻³ s ⁻¹) OR 5.3×10^{-3} to 5.4×10^{-3} (mol dm ⁻³ s ⁻¹) \checkmark Actual value will depend on amount of acceptable rounding in steps and whether figures kept in calculator even if rounding is written down. ALLOW any value in range given above.	3	ALLOW ECF from calculated $[H^+(aq)]$ and calculated answer for <i>k</i> from 4(c)(ii) e.g. If no square root taken, $[H^+] = 3.56 \times 10^{-6} \text{ mol dm}^{-3}$ and <i>rate</i> = 1.91 x 10 ⁻⁸ OR 1.9 x 10 ⁻⁸ by ECF
		Total	13	

Q	uest	ion	er	Marks	Guidance
3	(a)	(i)	Time for concentration (of reactant) to fall to half original value ✓	1	ALLOW time for concentration to fall by half DO NOT ALLOW concentration of product to fall by half ALLOW mass OR amount as alternative to concentration ALLOW time for reactant/substance/atoms to decrease by half
		(ii)	At least two half-lives correctly shown on graph AND half-life stated as approx. 54 s ✓	2	ALLOW half-life in range 50–56 s ALLOW half-life shown on graph Care: Initial concentration is ~5.8 and NOT 6.0
			TSt order has a constant hall-life ¥		 ALLOW 'half lives are the same', 'two half-lives are 54 s', etc. ALLOW 2 tangents drawn, one at half conc of first AND evidence that gradient (≡ rate) halves
		(iii)	No change ✓	1	
	(b)	(i)	<i>Tangent</i> On graph, tangent drawn to curve at $t \sim 40$ s \checkmark	3	Annotate tangent on graph
			Calculation of rate from the tangent drawn e.g. rate = $\frac{5.2}{116}$ = 0.045 OR 4.5 x 10 ⁻² \checkmark		Note: This mark can only be awarded from a tangent <i>ALLOW ECF</i> for tangent drawn at different time from 40 s <i>ALLOW</i> ±10% of gradient of tangent drawn <i>ALLOW</i> 2 SF up to calculator value <i>ALLOW</i> trailing zeroes, e.g. 0.04 for 0.040
			<i>Units</i> mol dm ⁻³ s ⁻¹ ✓ <i>Independent mark</i>		IGNORE '' sign for rate Note: IF candidate calculates rate via In 2 method (shown in (ii), consult with TL)

Question		er	Marks	Guidance
(b)	(ii)	$k = \frac{\text{answer to (b)(i)}}{3.45} \checkmark$ units: s ⁻¹ \checkmark Independent mark	2	From 0.045, $k = \frac{0.045}{3.45} = 0.013$ ALLOW concentration range 3.4–3.5 ALLOW use of unrounded calculator answer from (b)(i) even if different from answer given on (b)(i) answer line <i>Many will keep this value in calculator for (b)(ii)</i> ALLOW $k = \ln 2/t_{1/2} = 0.693/half life from (a)(iii)$ For 54 s, $k = 0.693/54 = 0.013$ ALLOW 2 SF up to calculator value
(c)		water is in excess OR concentration of H₂O is very large/does not change ✓	1	IGNORE water does not affect the rate
		Total	10	

Question	er	Mark	Guidance
Question 4	er Evidence of at least two half-lives measured on graph OR within text (would need evidence of two half-lives) \checkmark Any half-life value stated in range 180–220 s OR constant half-life \checkmark 1st order \checkmark Note : This is only correct response for order (ie no ECF). If not stated separately, this mark can be awarded from a rate equation, e.g. <i>rate</i> = $k[Br_2]^1$ OR <i>rate</i> = $k[Br_2]$ Evidence of tangent on graph drawn to line at $t = 0$ s \checkmark e.	Mark	Guidance ANNOTATE ALL Q3 WITH TICKS AND CROSSES, etc MARK ON GRAPH OR IN TEXT LOOK FOR STATEMENT ON GRAPH OR WITHIN TEXT ALLOW almost constant half-life
		4	MARK TANGENTS ON GRAPH ALLOW some leeway but tangent must coincide with part of curve that is 'straight' (ie between [Br ₂] = 0.010–0.009 and MUST NOT cross the curve

Question	er	Mark	Guidance
	$rate = \frac{0.010}{250} = 0.000040 \text{ OR } 4.0 \times 10^{-5} \checkmark$ units: mol dm ⁻³ s ⁻¹ \checkmark	2	ALLOW values from 1 SF (0.00004 OR 4 x 10 ⁻⁵) up to calculator value, correctly rounded ALLOW range ~ $\frac{0.010}{160}$ to $\frac{0.010}{300}$: i.e. ALLOW a calculated gradient in the range $6 \times 10^{-5} - 3 \times 10^{-5}$ from a tangent drawn at $t = 0$ IF tangent is drawn on graph at a different time or incorrectly (e.g. crossing curve), then mark rate calculation by ECF using the gradient of the tangent drawn by the candidate (<i>ie</i> not the range above). IF no tangent is drawn ALLOW a value in the range above ONLY Credit only attempts at tangents, not just a random straight line IGNORE a '- sign'
	$rate = k[Br_2] \text{ OR } k = \frac{rate}{[Br_2]} \checkmark$ $k = \text{ calculated result from } \frac{\text{calculated value for rate}}{0.010} \checkmark$ $units: s^{-1} \checkmark$	3	DO NOT ALLOW <i>rate</i> = <i>k</i> [Br], <i>ie</i> Br instead of Br ₂ DO NOT ALLOW just <i>k</i> [Br ₂], <i>ie</i> ' <i>rate</i> =' OR ' <i>r</i> =' must be present Calculation of <i>k</i> is from candidate's calculated initial rate From 0.00004, $k = \frac{0.000040}{0.010} = 4 \times 10^{-3}$ s Note: IF order with respect to Br ₂ has been shown as 2nd order, then mark this part by ECF , e.g. if Br ₂ shown to be 2nd order, rate = <i>k</i> [Br ₂] ² <i>k</i> = calculated result from $\frac{\text{calculated value for rate}}{0.010^2}$ units : dm ³ mol ⁻¹ s ⁻¹ OR mol ⁻¹ dm ³ s ⁻¹ Note: Units mark must correspond to the candidate's stated rate equation, NOT an incorrectly rearranged <i>k</i> expression
	Total	9	

Question		on Expected Answers	Marks	Additional Guidance
5	а	$BrO_3^- + 5Br^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O \checkmark$	1	ALLOW multiples
	b	<i>graph:</i> Straight/diagonal line through origin OR 0,0 AND 1st order with respect to $BrO_3^- \checkmark$	1	ANNOTATIONS MUST BE USED Both explanation and 1st order required for mark DO NOT ALLOW diagonal line OR straight line OR constant gradient on its own (no mention of origin OR 0,0) ALLOW 'As BrO ₃ ⁻ doubles, rate doubles' AND 1st order
		<i>initial rates data:</i> When [Br ⁻] is doubled, rate × 2 \checkmark 1st order with respect to Br ⁻ \checkmark When [H ⁺] × 2, rate × 4 (2 ²) \checkmark 2nd order with respect to H ⁺ \checkmark <i>Rate equation</i> rate = k [BrO ₃ ⁻] [Br ⁻] [H ⁺] ² \checkmark	4	ALLOW rate is proportional to concentration AND 1st order Mark order and explanation independently Mark order first, then explanation ALLOW ECF from candidate's orders above

Questio	Expected Answers	Marks	Additional Guidance
	Calculation of rate constant (3 marks)	3	ANNOTATIONS MUST BE USED
	$k = \frac{\text{te}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]^2}$ OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ $= 1.7 \times 10^{-2} \text{ OR } 1.65 \times 10^{-2} \checkmark \text{dm}^9 \text{ mol}^{-3} \text{ s}^{-1} \checkmark$		Calculation can be from any of the experimental runs – they all give the same value of k ALLOW mol ⁻³ dm ⁹ s ⁻¹ ALLOW 1.6510579 × 10 ⁻² and correct rounding to 1.7×10^{-2} Correct numerical answer subsumes previous marking point DO NOT ALLOW fraction: <u>238</u>
			DO NOT ALLOW fraction: $\frac{1}{14415}$ ALLOW ECF from incorrect rate equation. Examples are given below for 1st line of initial rates data. IF other rows have been used, then calculate the rate constant from data chosen. Example 1: 1st order with respect to H ⁺ rate = k [BrO ₃ ⁻] [Br ⁻] [H ⁺] $k = \frac{\text{rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]}$ OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})} \checkmark$ = 5.1 × 10 ⁻³ OR 5.12 × 10 ⁻³ \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW 5.11827957 × 10 ⁻³ and correct rounding to 5.1 × 10 ⁻³ Example 2: Zero order with respect to BrO ₃ ⁻ rate = k [Br ⁻] [H ⁺] ² $k = \frac{\text{rate}}{[\text{Br}^-][\text{H}^+]^2}$ OR $\frac{1.19 \times 10^{-5}}{(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ = 8.3 × 10 ⁻⁴ OR 8.26 × 10 ⁻⁴ \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark
	Tatal	40	ALLOW 8.255289629 \times 10 $^{\circ}$ and correct rounding to 8.3 \times 10 $^{\circ}$
	Total	10	

Question		on	Expected answers	Marks	Additional guidance
6	а		<i>graph:</i> Rate does not change with concentration AND zero-order with respect to l ₂ ✓ <i>initial rates data:</i> Mark independently		ANNOTATIONS MUST BE USED ALLOW (straight) line with zero gradient AND zero-order ALLOW horizontal line AND zero-order IGNORE just 'constant line' OR just 'straight line' also fits 1st order
			When [(CH ₃) ₂ CO] × 2, rate × 2 (2 ¹) \checkmark 1st order with respect to (CH ₃) ₂ CO \checkmark		CARE with comparisons in opposite direction ALLOW [(CH ₃) ₂ CO] × 0.5, rate × 0.5 (0.5 ¹)
			When [HCI] x 2.5, rate x 2.5 \checkmark 1st order with respect to HCI \checkmark		ALLOW [HCI] × 0.4, rate × 0.4 (0.4 ¹) ALLOW H ⁺ for HCI
					CARE: Comparison of Experiments 1 and 3 may be valid despite BOTH concentrations changing
			Rate equation and rate constant:		ALLOW ECF from incorrect orders In rate equation, square brackets are required
			rate = $k[(CH_3)_2CO(aq)][HCI(aq)] \checkmark$ $k = \frac{rate}{[(CH_3)_2CO(aq)][HCI(aq)]} OR$ $\frac{2.10 \times 10^{-9}}{(1.50 \times 10^{-3}) \times (2.00 \times 10^{-2})} \checkmark$		rate = $k[(CH_3)_2CO(aq)][HCI(aq)][I_2(aq)]^0$ ALLOW H ⁺ for HCI IGNORE state symbols, even if wrong
			= 7(.00) × 10 ⁻⁵ OR 0.00007(00) \checkmark units: dm ³ mol ⁻¹ s ⁻¹ \checkmark	9	ALLOW ECF for units 'correct' for incorrect expression used to calculate <i>k</i> , <i>e.g. upside down or wrong orders</i> $\frac{[(CH_3)_2CO(aq)][H^+(aq)]}{rate} \times \text{ units: mol s dm}^{-3} \checkmark$

Question		on	Expected answers	Marks	Additional guidance
	b		step 1 : H ₂ (g) + ICI(g) → LHS of step 1 ✓		State symbols NOT required
			$\begin{array}{c} \longrightarrow HCl(g) \ + \ Hl(g) \\ \textbf{step 2: } Hl(g) \ + \ ICl(g) \ \longrightarrow \ HCl(g) \ + \ I_2(g) \\ \text{products of step 1 } \textbf{AND } \text{step 2 } \checkmark \end{array}$	2	 2nd mark can ONLY be awarded provided that 1st mark has been awarded step 1 AND step 2 add up to the overall equation.
					e.g. ALLOW $\longrightarrow H_2ICI(g)$
					step 2: $H_2ICI(g) + ICI(g) \longrightarrow 2HCI(g) + I_2(g)$
					In step 2, ALLOW inclusion of extra species on both sides of the equation only if they cancel, e.g. HI(g) + HCI(g) + ICI(g) \longrightarrow 2HCI(g) + I ₂ (g)
			Total	11	

	Question		Answer	Mark	Guidance
7	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 8.3×10^4 OR 83333 award 2 marks THEN IF units are dm ⁶ mol ⁻² s ⁻¹ , award 1 further mark $k = \frac{rate}{[H_2(g)] [NO(g)]^2}$ OR $\frac{3.6 \times 10^{-2}}{(1.2 \times 10^{-2}) \times (6.0 \times 10^{-3})^2}$	2	 ALLOW 1 mark for 8.3 × 10^x with no working (power of 10 is error) ALLOW 2 SF up to calculator value of 8.333333333 × 10⁴ correctly rounded
			= 8.3 × 10 ⁴ OR 83000 OR 83333 ✓		ALLOW ECF for calculated answer from incorrectly rearranged <i>k</i> expression but not for units (Marked independently see below)
			units: dm ⁶ mol ⁻² s ⁻¹ ✓	1	ALLOW dm ⁶ , mol ⁻² and s ⁻¹ in any order, eg mol ⁻² dm ⁶ s ⁻¹ DO NOT ALLOW other units (Rate equation supplied on paper – not derived from data)
	(b)	(i)	effect on rate × 2 ✓	1	ALLOW 'doubles' OR <i>rate</i> = 7.2×10^{-2} (mol dm ⁻³ s ⁻¹)
		(ii)	effect on rate × ¼ OR x 0.25 ✓	1	ALLOW 'a quarter' OR decrease by ¹ / ₄ OR decrease by 0.25 OR rate decreases by 4 OR decrease by 75% OR <i>rate</i> = 0.9×10^{-2} (mol dm ⁻³ s ⁻¹) DO NOT ALLOW just 0.5^2 of rate OR rate decreases by 2^2
		(iii)	effect on rate × 64 ✓	1	ALLOW rate = 2.3(04) (mol dm ⁻³ s ⁻¹) DO NOT ALLOW just 'increases by 4 and then by 16 / 4^2 OR increases by 4^3

Question		Answer	Mark	Guidance
(c)	(i)	 (initial) rate increases AND more frequent collisions OR more collisions per second/time ✓ 	1	 BOTH points required for mark ALLOW rate increases AND concentration increases For concentration increases, ALLOW particles closer together OR less space between particles DO NOT ALLOW just more collisions OR collisions more likely
	(ii)	rate constant does not change ✓	1	
(d)		step 1: H ₂ (g) + 2 NO(g) → N ₂ O(g) + H ₂ O(g) LHS of step one \checkmark step 2: H ₂ (g) + N ₂ O(g) → N ₂ (g) + H ₂ O(g) rest of equations for step 1 AND step 2 \checkmark	2	State symbols NOT required For 'rest of equations', This mark can only be awarded if 1st mark can be awarded ALLOW other combinations of two steps that together give the overall equation (shown above part in scoris window), <i>eg</i> step 1: $\longrightarrow N_2(g) + \frac{1}{2} O_2(g) + H_2O(g)$ step 2: $H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(g)$ step 1: $\longrightarrow H_2O_2(g) + N_2(g)$ step 2: $H_2(g) + H_2O_2(g) \longrightarrow 2H_2O(I)$ There may be others with species, such as $H_2N_2O_2$ and HNO. Provided the two steps add up to give the overall equation AND charges balance, the 2nd mark can be awarded
		Total	10	